• Exam ple 5: 1
2 ↔ 0.5 ( Frac tio n ↔ Decimal)
1 C 2 = 1 2.
C0.5
C1 2.
• Ex amp le 6 : 1 ↔
1 C 2 C 3 1 2 3.
A B 5 3.
A B1 2 3.
Perce ntage Cal culations
• Use C OMP m ode f or per cent age c alc ulat ion s.
• Exam ple 1: T o ca lcu late 12% of 150 0.
15 0 0 - 12 A v 180.
• Ex a m p l e 2 : T o c a l c u l a t e w h a t p e r c e n t a g e o f 8 8 0 i s 6 6 0 .
660 \ 8 8 0 A v 75.
• Ex a m p l e 3 : T o a d d 1 5 % o n t o 2 5 0 0 .
25 0 0 - 15 A v + 2875.
• Ex a m p l e 4 : T o d i s c o u n t 3 5 0 0 by 2 5 % .
35 0 0 - 25 A v , 2625.
• Ex a m p l e 5 : T o c a l c u l a t e t h e f o l l o w i n g u s i n g a c o n s t a n t .
1 2 % o f 1 2 0 0 = 1 4 4
1 8 % o f 1 2 0 0 = 2 1 6
2 3 % o f 1 2 0 0 = 2 7 6
(1 2 %) 12 0 0 - - 12 A v K 144.
(1 8 % ) 18 A v K 216.
(2 3 % ) 23 A v K 276.
• Ex a m p l e 6 : 3 0 0 g r a m s a r e a d d e d t o a t e s t s a m p l e
o r i g i n a l l y w e i g h i n g 5 0 0 g r a m s , p r o d u c i n g a f i n a l t e s t
s a m p l e o f 8 0 0 g r a m s . W h a t p e r c e n t o f 5 0 0 g r a m s i s 8 0 0
grams?
300 + 5 0 0 A v 160.
• Ex a m p l e 7 : W h a t i s t h e p e r c e n t a g e c h a n g e w h e n a v a l u e
i s i n c r e a s e d f r o m 4 0 t o 4 6 ?
46 , 40 A v 15.
S ci e ntif ic F u nc tion Calculations
• U s e C O M P m o d e f o r s c i e n t i f i c f u n c t i o n c a l c u l a t i o n s .
• S o m e c a l c u l a t i o n s m a y t a ke a l o n g t i m e t o c o m p l e t e .
• W a i t f o r r e s u l t b e f o r e s t a r t i n g n e x t c a l c u l a t i o n .
• π = 3 . 1 4 1 5 9 2 6 5 3 6 .
k S e x a g e s i m a l F u n c t i o n s
• Ex a m p l e 1 : 1 4 ° 2 5’ 3 6 ” + 1 2 ° 2 3 ’ 3 4 ” = 2 6 ° 4 9 ’ 1 0 ”
14 I 25 I 36 I +
12 I 23 I 34 I = 26°49°10.
• Ex a m p l e 2 : 1 ° 2’ 3 ” + 4 . 5 6 = 5 . 5 9 4 1 6666 7
1 I 2 I 3 I + 4. 5 6 = 5.594166667
• Ex a m p l e 3 : s i n 87 ° 6 5’ 4 3 . 2 1 ” = 0 . 9 9 9 4 4 75 1 3 ( D E G m o d e )
87 I 65 I 4 3 . 2 1 I S 0.999447513
• Ex a m p l e 4 : 1. 2 3 ↔ 1° 13 ’ 4 8 ” 1. 2 3 I 1°13°48.
I 1.23
I 1°13°48.
• Ex a m p l e 5 : 12 ° 3 4 ’ ↔ 1 2 . 5 666666 7
12 I 34 I A O 12.56666667
Y o u c a n a l s o u s e I when input t ing v a lues t o c o n v er t
b e t w e e n s e x a g e s i m a l a n d d e c i m a l .
k
T r igonom et r i c / I n v e rse T r igonom et r i c F u nc tions
• Ex a m p l e 1 : s i n ( π
6 r a d ) ( R A D m o d e )
A x \ 6 = S RAD
0.5
• Ex a m p l e 2 : c o s 6 3 ° 5 2 ’ 4 1 ” ( D E G m o d e )
63 I 52 I 41 I W DEG
0.440283084
• Ex a m p l e 3 : t a n ( 35 g r a ) (G R A m o de)
35 E h GRA
–0.612800788
• Ex a m p l e 4 : co s –1 ( 2
2 r a d ) ( R A D m o d e )
2 A L \ 2 = A V RAD
0.785398163
• Exam ple 5: T o c onve r t 45 d eg ree s to r adi an s, gr ad s, an d
bac k to de gree s
F 4 45 DEG
45.
A F 5 RAD
0.785398163
A F 6 GRA
50.
A F 4 DEG
45.
Re peat ed co nvers ion be twe en an gle un its c an cau se
nor mal ly min ute er ror to ac cu mulat e, resu ltin g in po or
precision.
kHyperbolic / Inverse Hyperbolic Functions
• Exam ple 1: sin h 3.6 3.6 M S 18.28545536
• Exam ple 2 : sinh1
30 30 M A j 4.094622224
2
3
5
3
fx -8 2 S O L AR I I
fx -2 60 S O L AR I I
f x - 2 6 0SO L A R II N F
Basic Calculations
• Use t he CO MP mo de for b asi c cal cul atio ns.
• Exam ple 1: 23 4.5 53
23 + 4.5 , 53 = –2 5.5
• Exam ple 2: 56( 12 ) ( 2.5)
56 -12 E \ 2 .5 E =268.8
• Exam ple 3: 23 (11020 )
2 \ 3 -1 e 20 = 6. 66666666719
• Exam ple 4: 78 45 = 36
7 - 8 , 4 - 5 = 36.
• Exam ple 5: = 0.3
4 - 5 \ 6 A N = 0.3
• Ex a m p l e 6 : 2 [7 6 (5 4) ] 12 2
2 - O 7 + 6 -
O 5 + 4 P P = 12 2 .
• Y o u c a n s k i p a l l P o p e r a t i o n s b e f o r e t h e = key .
• E x a m p l e 7 : 4
3 π 5 3
4 \ 3 - A x - 5 A N = 523 . 59 87 7 5 6
C o nst a nt Calculat ions
• Pr e s s + , , , - ,o r \ t w i c e a f t e r i n p u t t i n g a n u m b e r t o
m a ke t h a t n u m b e r a c o n s t a n t .
• “ K ” i s o n t h e d i s p l a y w h i l e a c o n s t a n t i s b e i n g u s e d .
• U s e t h e C O M P m o d e f o r c o n s t a n t c a l c u l a t i o n s .
• Ex a m p l e 1 : 2 . 3 3, then 2.3 6
(2 . 3 3) 2.3 + + 3 = K 5.3
(2 . 3 6) 6 = K 8.3
• Ex a m p l e 2 : 12 2.3, then 1 2 ( 9)
(1 2 2.3 ) 12 - - 2 . 3 = K 27.6
(1 2 ( 9) ) 9 E = K –108.
• Ex a m p l e 3 : 1 7 17 17 17 68
(1 7 17 ) 17 + + = K 34.
(1 7 17 17 ) = K 51.
(1 7 17 17 17 ) = K 68.
• Ex a m p l e 4 : 1 . 7 4 8.3 5 2 1
(1 .7 2 ) 1. 7 - - = K 2.89
(1 .7 3 ) = K 4.913
(1 .7 4 ) = K 8.3521
Me m o r y C a l c u l a t i o n s
• U s e t h e C O M P m o d e f o r m e m o r y c a l c u l a t i o n s .
• U s e AY , | , A{ and Z f o r memor y c a lcula tions .
AY r e p l a c e s c u r r e n t m e m o r y c o n t e n t s .
• “ M ” a p p e a r s w h e n t h e r e i s a va l u e i n m e m o r y .
• T o c l e a r m e m o r y , p r e s s 0AY or tAY .
• Ex a m p l e 1 : (5 3 6) (2 3 8) (5 6 2) (9 9 4) 21 0 . 7 5
(5 3 6) 53 + 6 = A Y M 59.
(2 3 8) 23 , 8 | M 15.
(5 6 2) 56 - 2 | M 112.
(9 9 4) 99 \ 4 | M 24.75
( M e m o r y r e c a l l ) Z M 210.75
• Ex a m p l e 2 : T o c a l c u l a t e t h e f o l l o w i n g u s i n g m e m o r y a s
sho w n .
M 13.
• Ex a m p l e 3 : T o c a l c u l a t e t h e f o l l o w i n g u s i n g m e m o r y a n d
a c o n s t a n t : ( 1 2 3) (4 5 3) (7 8 3) 13 5 .
(1 2 3) 3 - - 12 = A Y MK 36.
(4 5 3) 45 A { MK 135.
(7 8 3) 78 | MK 234.
( M e m o r y r e c a l l ) Z MK 135.
F r ac tion Calculations
(fx - 8 2 S O L A R II /f x - 2 6 0 S O L A R II only)
• U s e C O M P m o d e f o r f r a c t i o n c a l c u l a t i o n s .
• T o t a l n u m b e r o f d i g i t s ( i n c l u d i n g d i v i s i o n m a r k s ) c a n n o t
exce ed 10.
• Ex amp le 1: 1
2 C 3 + 4 C 5 = 1 7 15.
• Ex amp le 2 : 3 1 4
3 C 1 C 4 +
1 C 2 C 3 = 4 11 12.
• Ex ampl e 3 : 2 C 4 2 4.
=1 2.
• Ex amp le 4 : 1.6 2. 1
1 C 2 + 1 .6 = 2.1
F raction /decimal calculation result is alw ays d ecimal.
6
4 5
2
3
4
5
7
15
1
4
2
3
11
12
2
4
1
2
1
2
Hand l i n g P r eca u t i o n s
• Be su r e t o p r e s s t h e 5 key b e f o r e u s i n g t h e c a l c u l a t o r .
• Y o u r c a l c u l a t o r i s m a d e u p o f p r e c i s i o n c o m p o n e n t s .
Never t r y t o t a ke i t a p a r t .
• Avo id d r o p p i n g yo u r c a l c u l a t o r a n d o t h e r w i s e s u b j e c t i n g i t
to strong im pac t .
• D o no t s t o r e t h e c a l c u l a t o r o r l e ave i t i n a r e a s ex p o s e d t o
hig h t e m p e r a t u r e o r h u m i d i t y , o r l a r g e a m o u n t s o f d u s t .
Wh en ex p o s e d t o l o w t e m p e r a t u r e s , t h e c a l c u l a t o r m a y
req ui r e m o r e t i m e t o d i s p l a y r e s u l t s a n d m a y eve n f a i l t o
op era t e. C o r r e c t o p e r a t i o n w i l l r e s u m e o n c e t h e c a l c u l a t o r
is bro u g h t b a c k t o n o r m a l t e m p e r a t u r e.
• T he d i s p l a y w i l l g o b l a n k a n d key s w i l l n o t o p e r a t e d u r i n g
ca lcu l a t i o n s . W h e n yo u a r e o p e r a t i n g t h e key b o a r d , b e
sur e t o w a t c h t h e d i s p l a y t o m a ke s u r e t h a t a l l yo u r key
op era t i o n s a r e b e i n g p e r f o r m e d c o r r e c t l y .
• Wi th c e r t a i n c a l c u l a t i o n s , i t m a y t a ke s o m e t i m e b e f o r e t h e
res ul t i s d i s p l a ye d . T h e d i s p l a y i s b l a n k w h i l e a c a l c u l a t i o n
is in p r o g r e s s .
• Avoid u s i n g vo l a t i l e l i q u i d s s u c h a s t h i n n e r o r b e n z i n e t o
cl ean t h e u n i t . W i p e i t w i t h a s o f t c l o t h , o r w i t h a c l o t h
tha t h a s b e e n d i p p e d i n a s o l u t i o n o f w a t e r a n d a n e u t r a l
det er g e n t a n d w r i n g o u t .
• In n o eve n t w i l l t h e m a n u f a c t u r e r a n d i t s s u p p l i e r s b e l i a b l e
to you o r a ny o t h e r p e r s o n f o r a ny d a m a g e s , ex p e n s e s ,
lo st p r o f i t s , l o s t s a v i n g s , o r a n y o t h e r d a m a g e s a r i s i n g
o u t of m a l f u n c t i o n , r e p a i r s , o r i n s u f f i c i e n t l i g h t . T h e u s e r
should prepa r e ph y s i c al re c o rd s o f d a t a t o pro t e c t a g ainst
su ch d a t a l o s s .
• N ever d i s p o s e o f t h e l i q u i d c r y s t a l p a n e l , o r o t h e r
componen ts b y bu rning them .
• Be for e a s s u m i n g m a l f u n c t i o n o f t h e u n i t , b e s u r e t o
carefully reread this manual an d ensure tha t the pro b lem
is n ot d u e t o o p e r a t i o n a l e r r o r .
• T he c o n t e n t s o f t h i s m a n u a l a r e s u b j e c t t o c h a n g e w i t h o u t
notice .
• N o pa r t o f t h i s m a n u a l m a y b e r e p r o d u c e d i n a n y f o r m
wit ho u t t h e ex p r e s s w r i t t e n c o n s e n t o f t h e m a n u f a c t u r e r .
• B e su r e t o ke e p a l l u s e r d o c u m e n t a t i o n h a n d y f o r f u t u r e
referen c e .
Modes
Appl ication Key
Opera t i o n
Mode
Na me *
Standa rd de vi a t ion ca lcu l a t ions Fl SD
Normal c a l c ula t ions F0 CO MP
Calcula t ions using d e grees F4 DE G
Calcula t ions using ra dians F5 RA D
Calcula t ions using gra d s F6 GR A
Num ber o f dec ima l plac e
specification F7 FIX
Num ber o f sign ifi cant d igi t
specification F8 SCI
Can cel s FIX and S CI set tin gs F9 NORM
* D isp lay ind ic ators s how c urre nt mod e set tin g. Ab sen ce of
di spl ay indi cato r ind icat es CO MP Mo de.
• Th e above t able i s pri nted o n the ba ck of th e cal cul ator.
Note!
• A mo de gu ide i s loc ated at t he to p of the d isp lay sc reen.
• DEG , RAD, an d GRA m od es can b e use d in co mbi nati on
wit h COM P and S D mod es.
• F9 do es not ex it SD m ode.
• F0 exit s SD mo de.
• F0 do es not c lear S CI or FIX s pec ifi cati ons.
• Alw ays pre ss t b e f o r e e n t e r i n g D E G , R A D , a n d G R A
modes.
• Rem emb er to alw ays set th e ope ratin g mod e and a ngu lar
uni t (DEG , RAD, GR A) bef ore st ar ting yo ur cal cul atio n.
User ’s Guide
RJA536287-001V02
EN
SA1612-B Printed in China
© 2017 CASIO COMPUTER CO., L TD.
kCo mmon a nd Na tural L oga rith ms, E xpon ent s
• Exam ple 1: log 1.23 1. 2 3 R 0.089905111
• Exam ple 2 : In 90 ( log e 90) 90 T4.49980967
• Exam ple 3: Iog 64
Iog 4
64 R \ 4 R = 3.
• Exam ple 4: 100.4
5 e 3
.4 A Q +
5 - 3 E A U = 2.760821773
• Ex ampl e 5 : 23 2 w 3 = 8.
• Exam ple 6 : 23 2 w 3 E = 0.125
• Exam ple 7: e 10 10 A U 22026.46579
• Exam ple 8: log s in 40 °+ log c os 35° ( DEG mo de)
40 S R + 35 W R = DEG
–0.278567 983
To convert to antilogarithm: A Q DEG
0.526540 784
• Ex a m p l e 9 : 8 1/ 3 8 A s 3 = 2.
k Sq uare R o o t s, C u be R o o t s, Sq uares,
Reci procal s and F a ct or ial s
• Ex a m p l e 1 : 2 3 5
2 A L + 3 A L - 5 A L = 5.287196 909
• Ex a m p l e 2 : 3 5 3
27
5 A D + 27 E A D = –1.290024 053
• E x a m p l e 3 : ( 30 ) 2 30 E K 900.
• Ex a m p l e 4 : 1 1
3 4
1
3 A X , 4 A X =
A X 12.
• Ex a m p l e 5 : 8! 8 A f 40 320.
k F I X , S C I , N O R M , R N D, R A N # , E N G C a l c u l a ti ons
• Ex a m p l e 1 : 1. 2 3 4 1 . 2 3 4 , r o u n d i n g r e s u l t t o t w o p l a c e s
(F I X 2 ) .
F 7 2 FIX
0.00
1. 2 3 4 + 1. 2 3 4 = FIX
2.47
• Ex a m p l e 2 : 1. 2 3 4 1 . 2 3 4, r o u n d i n g i n p u t t o t w o p l a ces .
F 7 2 1 . 2 3 4 A b +
1. 2 3 4 A b = FIX
2.46
• Pr e s s F 9 t o c l e a r FI X s p e c i f i c a t i o n .
• Ex a m p l e 3 : 1 3, dis p la ying result with t w o sign ifi cant
digits ( S C I 2) .
F 8 2 SCI
0.0 00
1 \ 3 = SCI
3.3–01
• Pr e s s F 9 t o c l e a r S C I s p e c i f i c a t i o n .
• Ex a m p l e 4 : T o c o nve r t 5 6 ,0 8 8 m e t e r s t o k i l o m e t e r s.
5 6088 A J 56.0 88 03
• Ex a m p l e 5 : T o c o n v er t 0 . 0 8 1 2 5 grams t o milligram s.
.0 8 1 2 5 A J 81. 25–03
• Ex a m p l e 6 : T o gene ra t e a random numbe r be tween
0.0 0 0 a n d 0. 9 9 9 .
E x a m p l e ( r e s u l t s d i f f e r e a c h t i m e ) A c 0. 664
k Coo r d i na t e Co n v ers i o n
• Ex a m p l e 1 : T o c o nve r t p o l a r c o o r d i n a t e s ( r 2,
60°) t o
r e c t a n g u l a r c o o r d i n a t e s ( x , y ) . ( D E G m o d e )
x 2 A z 60 = DEG
1.
y A N DEG
1.732050 808
A N s w a p s d i s p l a ye d va l u e w i t h va l u e i n m e m o r y .
• Ex a m p l e 2 : To convert rectangular coordinates (1 , 3 ) to
p o l a r c o o r d i n a t e s ( r ,
) . ( R A D m o d e )
r 1 A y 3 A L = RA D
2.
θ
A N RA D
1.047197 551
kPermutation
• Exam ple: T o dete rmin e how ma ny dif fere nt 4- di git va lues
ca n be pro duc ed us ing t he num ber s 1 thr ough 7 .
7 A m 4 = 840.
kCombination
• Exam ple: T o dete rmi ne how m any dif fer ent 4 -me mber
gro ups c an be o rgan ized in a g rou p of 1 0 ind ivi dua ls.
10 A n 4 = 210.
CASIO Worldwide Education Website
http://edu.casio.com
Manuals are available in multi languages at
http://world.casio.com/manual/calc
fx- 8 2SOLAR ,,
fx-260SOLAR ,,
fx-260SOLAR ,, NF
EN
f x - 8 2 S O L A R 2 6 0 S O L A R I I N F E N 1 6 1 2 1 2 . i n d d 1 fx-82SOLAR260SOLARIINFEN161212.indd1 1 6 / 1 2 / 1 2 1 0 : 5 1 16/12/1210:51