Stat istical Calculations ( SD M ode )
• Pres s F l to en ter the S D Mod e for st ati sti cal
calculations using standard deviation.
• If FIX or S CI is on t he di spl ay , pr ess F 9 fir st.
• Dat a inpu t always s tar ts w ith A u .
• Exam ple: To c a l c u l a t e n1, n , o , n , x, and x2 for th e
fol lowi ng dat a: 5 5, 54, 51 , 5 5, 53 , 53, 5 4, 52
Enter SD Mode. F l SD
0.
Input Data. A u 55 }
54 } 51 }
55 } 53 } }
54 } 52 } SD
52.
Sample standard deviatio
n
A q SD
1.407885953
Population standard deviation A p SD
1.316956719
Arithmetic mean A ` SD
53.375
Number of data A r SD
8.
Sum of values A o SD
427.
Sum of squares of values A a SD
22805.
• } } i n p u t s t h e s a m e d a t a t w i c e ( a s a b ove ) .
• Y o u c a n a l s o i n p u t m u l t i p l e e n t r i e s o f t h e s a m e d a t a u s i n g
-. T o i n p u t t h e d a t a 1 1 0 t e n t i m e s , f o r ex a m p l e, p r e s s 1 1 0
-10 } .
• Th e a b ove r e s u l t s c a n b e o b t a i n e d i n a n y o r d e r , a n d n o t
ne ces s a r i l y t h a t s h o w n a b ove.
• T o de l e t e d a t a yo u h a ve j u s t i n p u t , p r e s s A [ .
kMak i n g C o r r e c t i o n s D u r i n g D a t a I n p u t
• Examp l e 1 : T o c h a n g e d a t a yo u h a ve j u s t i n p u t .
Correct Actual Correction
51 } 50 }A
[
51 }
130 -
31 }
120 -t
130 -
31 }
130 -
31 }
120 -
31
t 130 -
31 }
• Ex amp l e 2 : T o c h a n g e d a t a yo u p r ev i o u s l y i n p u t .
Correct Actual Correction
51 } 49 } 49 A [
51 }
130 -
31 }
120 -
30 }
120 - 30 A [ 130 -
31 }
T echnic a l I n fo rm at ion
kKeys a n d T h e i r F u n c t i o n s
• Ge ne r a l
All c lea r ................................................ t
Ari thme t i c c a l c u l at i o n s ......................... + , , , - ,
.............. \ , =
Bac ksp a c e ........................................... Q
Cle ar ( r e t a i n s m e m o r y ) ........................ k
Num be r i n p u t ....................................... 0 – 9 , l
Power o n ; A l l r e s e t ............................... 5
Sig n c h a n g e ......................................... E
• Me mo r y
Mem or y i n ............................................ A Y
Mem or y m i n u s ..................................... A {
Mem or y p l u s ........................................ |
Mem or y r e c a l l ...................................... Z
• Sp ec i a l
Dis pla y / m e m o r y swa p ......................... A N , A d
Ex pon e n t .............................................. e
Inter na l r o u n d i n g .................................. A b
Parent h e s e s ......................................... O , P
Pi (3 .1 4 1 5 9 2 6 5 3 6 ) ................................ A x
Sel ect m o d e ......................................... F
Sexag e s i m a l ........................................ I , A O
Shi ft s k e y f u n c t i o n s .............................. A
• Sc ien t i f i c F u n c t i o n s
Arc co s i n e ............................................ A V
Arc s in e ................................................ A j
Arc t an g e n t ........................................... A g
Com mo n a n t i l o g a r i t h m ........................ A Q
Com mo n l o g a r i t h m .............................. R
Conve r t to d e g r e e s .............................. A F 4
Conve r t to g r a d s .................................. A F 6
Conve rt to r adian s ................................ A F 5
Cos ine .................................................. W
Cub e .....................................................A N
Cub e root ............................................. A D
Engi neer ing .......................................... A J , A P
Factor ial ............................................... A f
Fract ion* ............................................... C
Fract ion* ............................................... A B
Hyp erb olic ............................................ M
Natur al ant ilog arit hm ...........................A U
Natur al lo gari thm ................................. T
Perce nt ................................................. A v
Polar-to -rec tan gular ............................. A z
Power ................................................... w
Ran dom nu mber .................................. A c
Rec ipr oca l ............................................A X
Rec tan gular-to -po lar ............................ A y
• Exam ple: The fo llow ing o perat ion u ses 4 l evels an d 5
nested paren theses.
2
- O O O 3 + 4 - O O 5 + 4
Th e tab le be low sh ows re gist er con tent s foll owin g the
above input.
Register Contents
x4
L1 (( 5
L2 4
L3 ((( 3
L4 2
L5
L6
kFormu las and R ang es
Th e follo wing a re the f ormu las a nd ran ges t hat are a ppl ied
t o va r i o u s c a l c u l a t i o n s t h a t c a n b e p e r f o r m e d u s i n g t h i s
ca lcu l a t o r .
Coordi nate T r ansf or mation
• W i t h p o l a r c o o r d i n a t e s ,
θ
c a n b e c a l c u l a t e d w i t h i n a r a n g e
of – 1 8 0 °
θ
1 8 0 ° . T h e c a l c u l a t i o n r a n g e i s t h e s a m e f o r
rad i ans and grad s.
\
<
;
3 [ \
[
U
<
3RO
5HF
;
θ
θ
3 U
Pe rmu t at ion
• I n p u t r a n g e : n r 0 ( n , r : i n t e g e r s )
• Fo r m u l a : n P r
Co mbi n a ti o n
• I n p u t r a n g e : n r 0 ( n , r : i n t e g e r s )
• Fo r m u l a :
n C r
P o p u l a t i o n S t a n d a r d D e v i a t i o n
Q Q
L 1
Q ( [ L – [ ) 2
Q
[ 2 – ( [ ) 2 / Q
S a m p l e S t a n d a r d D e v i a t i o n
Q – 1 Q – 1
L 1
Q ( [ L – [ ) 2
[ 2 – ( [ ) 2 / Q
Q – 1
Ar ithm etic M e an
o Q
L 1
Q [ L [
Q
In p u t Ran g es
Functions Input Range
sin x
cos x
tan x
(DEG) x 9 10 9
(RAD) x 5 10 7 π rad
(GRA) x 1 10 10 grad
However, for tan x :
x ≠ 90(2 n 1):DEG
x ≠ π 2·(2 n 1):RAD
x ≠ 100(2 n 1):GRA
sin –1 x
cos –1 x x 1
tan –1 x x 1
10 100
sinh x
cosh x x 230.2585092
tanh x x 1
10 100
sinh –1 x x 5
10 99
cosh –1 x 1 x 5
10 99
tanh –1 x x 1
log x /ln x 1
10 –99
x 1
10 100
10 x –1
10 100
x
100
e x –1
10 100
x 230.2585092
[ 0 x 1
10 100
x 2 x 1
10 50
x 3 x 2.154434690
10
33
1/ x x 1
10 100 ;
x ≠
0
[
3 x 1
10 100
x !0
x
69 (
x is an integer)
n P r / n C r
0 r n
n 1 10 10
( n and r are integers)
R → P
x 2 y 2 1 10 100
P → R
0 r 1 10 100
(DEG)
9 10 9
(RAD)
5 10 7 π rad
(GRA)
1 10 10 grad
°’ ”
Input and Results:
Total of hour, minutes, and seconds digits
must be 10 or fewer (including separator
symbols)
Decimal ↔ Sexagesimal Conversions
x 2777777.777
xy
x0: –1 10100 ylog x100
x0: y0
x0: y n;1
2n 1 ( n is an integer)
However: –1 10100 y logx 100
x1/ y
x0: y ≠ 0
–1 10100 1/y logx 100
x0: y0
x0: y2 n1; 1
m( m ≠ 0; m and n are integers)
However: –1 10100 1/y logx 100
a b / c*
Total of integer, numerator, and denominator
must be 10 digits or less(including division
marks).
n !
( n r )!
n !
r !( n r )!
Roo t ...................................................... A s
Sin e ......................................................S
Squ are .................................................. K
Squ are ro ot .......................................... A L
T ang ent ................................................ h
Permu tatio n .......................................... A m
Com bin ation ......................................... A n
* fx- 82SO LA R II /fx -260 SO LAR II only
• St atis tic s (S D Mo de )
Ari thme tic me an ................................... A `
Data d elete ........................................... A [
Data i nput ............................................. }
Num ber of d ata .................................... A r
Popu latio n stan dard d eviati on .............A p
Sam ple st and ard dev iatio n .................. A q
Stat ist ical r egis ter cl ear ....................... A u
Sum of s quar es of valu es .................... A a
S u m o f va l u e s ...................................... A o
k E x p o n e n t i a l D i s p l a y Fo r m a t s
T h i s c a l c u l a t o r c a n d i s p l a y u p t o 1 0 d i g i t s . L a r g e r va l u e s a r e
a u t o m a t i c a l l y d i s p l a ye d u s i n g ex p o n e n t i a l n o t a t i o n . I n t h e
c a s e o f d e c i m a l va l u e, yo u c a n s e l e c t b e t w e e n t w o f o r m a t s
t h a t d e t e r m i n e a t w h a t p o i n t ex p o n e n t i a l n o t a t i o n i s u s e d .
• N O R M 1
W i t h N O R M 1 , e x p o n e n t i a l n o t a t i o n i s a u t o m a t i c a l l y u s e d
f o r i n t e g e r va l u e s w i t h m o r e t h a n 1 0 d i g i t s a n d d e c i m a l
va l u e s w i t h m o r e t h a n t w o d e c i m a l p l a c e s .
• N O R M 2
W i t h N O R M 2 , e x p o n e n t i a l n o t a t i o n i s a u t o m a t i c a l l y u s e d
f o r i n t e g e r va l u e s w i t h m o r e t h a n 1 0 d i g i t s a n d d e c i m a l
va l u e s w i t h m o r e t h a n n i n e d e c i m a l p l a c e s .
T o s w i t c h b e t w e e n N O R M 1 a n d N O R M 2
Pr e s s F 9 . T h e r e i s n o i n d i c a t i o n o n t h e d i s p l a y o f w h i c h
f o r m a t i s c u r r e n t l y i n e f fe c t , b u t yo u c a n d e t e r m i n e t h e
s e t t i n g by p e r f o r m i n g t h e f o l l o w i n g c a l c u l a t i o n .
1 \ 2 0 0 = 5. –03 NORM 1 f o rma t
0.005 NORM 2 f o rma t
• A l l o f t h e ex a m p l e s i n t h i s m a n u a l s h o w c a l c u l a t i o n r e s u l t s
u s i n g t h e N O R M 1 f o r m a t .
k When y o u h a v e a pr o b lem......
I f c a l c u l a t i o n r e s u l t s a r e n o t w h a t yo u ex p e c t o r i f a n e r r o r
o c c u r s , p e r f o r m t h e f o l l o w i n g s t e p s .
1. F 0 ( C O M P m o d e )
2. F 4 ( D E G m o d e )
3. F 9 ( N O R M m o d e )
4. C h e c k t h e f o r m u l a yo u a r e w o r k i n g w i t h t o c o n f i r m i t i s
co r r ect.
5 . En t e r t h e c o r r e c t m o d e s t o p e r f o r m t h e c a l c u l a t i o n a n d
tr y a g ain .
k M a k i ng C o rr e c t i ons D uring Calculat ions
• I f yo u m a ke a m i s t a k e w h e n i n p u t t i n g a va l u e ( b u t d i d
n o t ye t p r e s s a n o p e r a t o r key ) , u s e Q t o b a c k s p a c e a n d
d e l e t e i n p u t d i g i t s o n e - by - o n e . O r yo u c a n p r e s s k to
c l e a r t h e i n p u t e n t i r e l y a n d s t a r t a g a i n .
• I n a s e r i e s o f c a l c u l a t i o n s , p r e s s k w h i l e a n i n ter m e d i a te
r e s u l t i s d i s p l a ye d t o c l e a r o n l y t h e l a s t c a l c u l a t i o n
pe r f ormed .
• T o c h a n g e t h e o p e r a t o r key ( + , , , - , \ , w , As ,
e t c . ) yo u j u s t p r e s s e d , s i m p l y p r e s s t h e c o r r e c t o p e r a t o r
key . I n t h i s c a s e, t h e o p e r a t o r o f t h e l a s t key yo u p r e s s i s
u s e d , b u t t h e o p e r a t i o n r e t a i n s t h e o r d e r o f p r e c e d e n c e o f
t h e o p e r a t i o n f o r t h e f i r s t key yo u p r e s s e d .
k Ov er f l o w or Error Ch e c k
T h e f o l l o w i n g c o n d i t i o n s m a ke f u r t h e r c a l c u l a t i o n i m p o s s i b l e .
a . When a result (whether intermediate or final) or a total
accumulated in memory is greater than ± 9 . 999999999
10 99 . ( “ – E – ” i n d i c a t o r a p p e a r s o n t h e d i s p l a y . )
b. W h e n f u n c t i o n c a l c u l a t i o n s a r e p e r f o r m e d u s i n g a va l u e
t h a t exc e e d s t h e i n p u t r a n g e. ( “ – E – ” i n d i c a t o r a p p e a r s
o n t h e d i s p l a y . )
c . W h e n a n i l l o g i c a l o p e r a t i o n ( s u c h a s a n a t t e m p t t o
ca lcu l a t e o and σ n while n 0 ) is pe r f ormed du ring
s t a t i s t i c a l c a l c u l a t i o n s . ( “ – E – ” i n d i c a t o r a p p e a r s o n t h e
displa y . )
d. When an illeg al ma thema t i c al o p e r a t ion ( s u c h as division
by ze r o ) i s p e r f o r m e d . ( “ – E – ” i n d i c a t o r a p p e a r s o n
displa y . )
e. T h e t o t a l n u m b e r o f n e s t e d p a r e n t h e s e s l e ve l s exc e e d s
s i x , o r w h e n m o r e t h a n 1 8 p a i r s o f p a r e n t h e s e s a r e u s e d .
(“ – 1 – ” i n d i c a t o r a p p e a r s o n t h e d i s p l a y . )
• T o c l e a r a n y o f t h e a b ove c o n d i t i o n s , p r e s s t and
p e r f o r m t h e c a l c u l a t i o n f r o m t h e b e g i n n i n g .
• I n t h e c a s e o f c o n d i t i o n e, yo u c o u l d a l s o p r e s s k . T h i s
c l e a r s t h e i n t e r m e d i a t e r e s u l t j u s t p r i o r t o t h e ove r f l o w , s o
yo u c a n c o n t i n u e w i t h t h e c a l c u l a t i o n f r o m t h a t p o i n t .
• N o e r r o r o c c u r s w h e n t h e r e s u l t i s w i t h i n t h e r a n g e o f
(1 10 99 ) t o (1 10 99 ) . I n s t e a d , t h e d i s p l a y s h o w s a l l
ze r o s .
k Pow e r S u p p l y
T h i s c a l c u l a t o r i s p o w e r e d by a s o l a r c e l l t h a t c o nve r t s
a v ailable lig h t in t o ele c tr i c al p o w e r .
S o l a r C e l l P r e c a u t i o n s
• T h e s o l a r c e l l r e q u i r e s a t l e a s t 5 0 l u x o f l i g h t t o p r ov i d e
powe r .
• If ava ila ble li ght i s too lo w , t he di spl ay may be com e dim,
ca lcu lati on fun ct ions m ay bec ome i mpo ssi ble, o r the
co ntent s of the i nde pen den t memo ry m ay be lo st. If t his
hap pen s, move to a n area w ith m ore li ght.
kOr der o f Ope rat ions a nd Level s
Op erat ion s are per fo rme d in the f ollo wing o rde r of
precedenc e.
1. Fu n c t i o n s
2. xy , x 1 /y , R → P , P → R, n P r, n C r
3. ,
4. ,
• Op erat ion s with t he sa me pre ced enc e are p er form ed
fr om le ft t o ri ght , wi th o per ati ons enc lo se d in pa ren the se s
per fo rme d firs t. If pa rent hese s are ne sted , the o pera tion s
en clo sed in t he in nerm ost s et of par enth ese s are
performed first.
• Reg iste rs L1 t hrou gh L 6 st ore op erat ion s. The re are si x
reg iste rs, s o cal cul atio ns up to s ix leve ls ca n be sto red.
• E ach l evel ca n cont ain u p to thr ee op en par enth ese s, so
par enth eses c an be n este d up to 18 tim es. RJA536287-001V02
Functions Input Range
SD
x 1 1050
n 1 10100
n, o : n ≠ 0
n –1 : n ≠ 0, 1
* fx- 82SO LA R II /fx -260 SO LAR II only
• For a s ingl e cal cul atio n, cal cul atio n erro r is 1 at t he 10th
di git. ( In th e cas e of exp one ntia l dis play, calc ulat ion e rror
is 1 at t he las t sig nif ica nt dig it.) Er ror s are cu mul ative
in th e cas e of co nse cut ive ca lcu lati ons, w hic h can a lso
cause them t o become large . (This is also true of int ernal
co nse cut ive ca lcu lati ons th at are p er form ed in th e cas e of
xy , x1 /y , x!, 3x, n P r, n C r, etc.)
In th e vic ini ty of a f unc tio n’s sing ular p oint a nd po int of
inf lec tio n, erro rs ar e cumu lati ve and m ay bec ome la rge.
Calculation Capacity:
• Inp ut / Ba sic C alc ulat ion s
1 0 - d i g i t m a n t i s s a ; o r 1 0 - d i g i t m a n t i s s a p l u s 2 - d i g i t
exp one nt up to 10±99
k Spec i f i c a t i o n s
P o w e r S u p p l y : S o l a r c e l l
Op erati n g T e mp erat u r e : 0°C 40 ° C ( 3 2° 10 4 ° F )
D i m e nsions : 9 ( H ) 70 . 5 ( W ) 1 2 1 . 5 ( D ) m m
3/8" (H) 2-3/4" (W) 4-3/4" (D)
We i g h t : 5 5 g ( 1 . 9 oz)
CASIO COMPUTER CO., L TD.
6-2, Hon-machi 1-chome,
Shibuya-ku, T okyo 151-8543, Japan
Manufacturer:
CASIO COMPUTER CO., LTD.
6-2, Hon-machi 1-chome
Shibuya-ku, Tokyo 151-8543, Japan
Responsible within the European Union:
Casio Europe GmbH
Casio-Platz 1
22848 Norderstedt, Germany
www.casio-europe.com
f x - 8 2 S O L A R 2 6 0 S O L A R I I N F E N 1 6 1 2 1 2 . i n d d 2 fx-82SOLAR260SOLARIINFEN161212.indd2 1 6 / 1 2 / 1 2 1 0 : 5 1 16/12/1210:51