68 Ferm
1
ANNEX 1 - PARTS LIST TAILSTOCK/SHEARS
NR PART
TAILSTOCK
1 CLAMP LEVER
2 BALL NIPPLES
3 CLAMPING NUT
4 LOCKING SCREW
5 SPINDLE
6 SPINDLE BEARING
7 HANDWHEEL
8 COVER PLATE
9 SPINDLE NUT
10 TAILSTOCK
11 SLIDING BUSH
12 BED
13 CLAMPING BOLT
14 ADJUSTING SCREWS
15 NUT
SHEARS
1 SHEARS
2 IDLER SHAFT
3 LOCKING BOLT
4 SPACING RING
THE TAIL STOCK
Fig.1
The end of the centerline is formed by the tail stock (8).
The axis of the fixed and tail stock are exactly in each
others extension. Depending on the lenght of the piece
of work the head can be moved over the bed and it can
be fixed. With the slide bush (7), in which a center has to
be installed, the piece of work can be exerted fixed and
revolving right on the centerline. If you turn back the
slide bush, the center is automatically untied. The body
of the head has been divided. The upper part can be
adjusted sideways with regard to the upper part by
means of adjusting screws. Through this an adjustment
next to the centerline can be obtained. Normal
movements in the lenght direction do not have side ways
adjustments as a consequence.
THE COMBINED
TRANSMISSION/STARTING AXLE
Fig.3 & 4
For a good surface quality a correct and particularly a
constant rate of turnover in the longitudinal direction is
important. For longer pieces of work this is almost
impossible with your hands. By closing the lock nut the
support is coupled with the thread on the transmission.
When the transmission has been switched on this one
has been coupled to the main shaft in his turn. With this a
coupling is made with an intermediate wheel between
the drive wheel of the transmission and the drive wheel
for the longitudinal feed on the headstock. This happens
because of an adjustment of the change wheel scissors,
watch fig. 3 and 4.
At each rotation of the main shaft the support will move
itself over a certain distance along the bed. This distance
depends on the wire haste and the chosen wheel change
on the transmission. By chosing another wheel change
the star ting speed can be adapted.
With thread-cutting the same happens in principle,
however with a much bigger support movement with a
much lower main shaft speed. In this case a coupling has
to be made with the thread-cutting driving gear of the
headstock. The positioning of the gear wheels happens
by the installation of the rings on the starting axle and
intermediate wheel axle of the scissors. In this case
change of the change wheel on the transmission makes
possible a choice of the haste of the thread which has to
be cut. On the transmission is no automatic cut out. So
switch this one off for preventing that the chisel runs
against the chuck.
THE DRIVE
Fig.5
Since the applied motor has a fixed and relatively high
number of revolutions the transmission has been done in
such a way that this reduces the numbers of revolutions
at the same time. Besides, with the application of plural
pulleys and an intermediate pulley this number of
revolutions is variable in six successive steps.
For lifting up possible belt tension differences the
bearing-mounted belt pressure roll has been made
variable. Watch fig.5. For reaching the three highest
spindle speeds the front belt has to be shifted from the
intermediate-pulley to the motor pulley. The
intermediate gear keeps driven and serves as flywheel
for catching load variations.
BASIC PRINCIPLES OF THE TURNING
Before you can start turning, you have to know the most
important basic under standings. Otherwise there is a
change that the wrong turning speed or the wrong chisel
is chosen. With a number of tables and rules making the
machine ready for turning is easier.
CLAMPING
Fig.6 - 8
Clamping the piece of work has to happen with care. Put
the piece of work in the chuck as far as possible and
clamp this one with the tightening wrench. If you clamp
too hard the chuck, basins or the piece of work can be
damaged. The same applies for the sliding tube. Tighten
this one with your hands, strong but not by force. Some
clamping examples by which also the use of bores and
chisel is made clear, can be seen in fig.6, 7 and 8.
The represented standard three-chuck is self-centring.
Through this the axis of a small piece of work falls exactly
on the centerline, even if the dead centre is not used.
With a chuck belongs an inside basin (represented) and
an outside basin. These ones are used for inside clamping
of bigger diameters. Every basin has in the chuck the
same place. Place and basin are numbered!
In fig.6 a right side cutting chisel (up) and a right bended
roughing tool is used. The arrows indicate the starting
direction. The roughing tool can be used in longitudinal
direction and in cross direction and is often used for
quickly elimina ting many material. Fig 7. shows the use of
a left side cutting chisel (up) and a blind boring chisel.
Fig.8 shows a clamp with dead center in a tail stock. A
pointed chisel has been used for an egal finish. Under this
figure a clamping is represen ted for making a bore with a
spiral drill. Beforehand you have to pre-drill with a
center bore. This is a bore from which the shank is much
thicker than the crossing frog. The boring gap which
arises through that serves as a center gap for both the
center and the bore!
Ferm 9